

Tetrahedron Letters 43 (2002) 9171-9174

One-pot aza-Baylis–Hillman reactions of arylaldehydes and diphenylphosphinamide with methyl vinyl ketone in the presence of TiCl₄, PPh₃, and Et₃N

Min Shi* and Gui-Ling Zhao

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received 19 August 2002; revised 23 September 2002; accepted 4 October 2002

Abstract—We found that one-pot, three-component, aza-Baylis–Hillman reactions of arylaldehydes, diphenylphosphinamide, and methyl vinyl ketone (MVK) can be realized in the presence of TiCl₄ (0.8 equiv.), PPh₃ (0.1 equiv.), and Et₃N (12 equiv.) in dichloromethane to give the corresponding aza-Baylis–Hillman adducts **2** in good yields. © 2002 Elsevier Science Ltd. All rights reserved.

Since Baylis and Hillman first reported reactions of acetaldehyde with ethyl acrylate and acrylonitrile in the presence of catalytic amounts of a strong Lewis base such as 1,4-diazabicyclo[2.2.2]octane (DABCO) in 1972,¹ the Baylis–Hillman reaction has made great progress,² and now includes a catalytic asymmetric version.³ However, in this very simple and useful reaction, aldehvdes¹⁻³ and N-benzvlidene-4only methylbenzenesulfonamides⁴ are generally used as the substrates for reactions with α,β -unsaturated ketones, nitriles or esters. Previously, we reported an unprecedented aza-Baylis-Hillman reaction of N-arylidenediphenylphosphinamides 1 with methyl vinyl ketone

(MVK), methyl acrylate, and acrylonitrile in the presence of various Lewis bases such as PPh₃, PPh₂Me or DABCO (Scheme 1).⁵ In this case, we used *N*-arylidenediphenylphosphinamides **1**, which were prepared in moderate yields from the reaction of diphenylphosphinamide with arylaldehyde in the presence of TiCl₄ (0.55 equiv.) and triethylamine (Et₃N, 3.0 equiv.) according to the literature, in this Baylis–Hillman reaction (Scheme 1).⁶ Recently, an efficient and selective onepot, three-component, procedure for the formation of α -methylene- β -amino acid derivatives using the aza-Baylis–Hillman protocol has been disclosed using DABCO (Lewis base) and La(OTf)₃ or Ti(OPrⁱ)₄ (Lewis

Ar-CH=O +
$$NH_2$$
-PPh₂ $\xrightarrow{\text{TiCl}_4(0.55 \text{ eq})}$ $\xrightarrow{\text{CH}_2Cl_2, \text{ Et}_3N(3.0 \text{ eq}), 0 \, {}^{\circ}\text{C}}$ $Ar-CH=N-PPh_2$
40-50% yield

Scheme 1.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02263-3

Keywords: diphenylphosphinamide; Lewis base; Baylis–Hillman reactions; methyl vinyl ketone (MVK); titanium(IV) chloride (TiCl₄); triethyl-amine (Et_3N).

^{*} Corresponding author. Fax: 86-21-64166128; e-mail: mshi@pub.sioc.ac.cn

acid) in which methyl acrylate is often utilized as the substrate (Scheme 2).⁷ Thus, we attempted to simplify the reaction procedure of the aza-Baylis–Hillman reaction of **1** with MVK in a one-pot manner. Herein, we wish to report an unprecedented one-pot, three component, aza-Baylis–Hillman reaction between arylaldehydes, diphenylphosphinamide, and MVK.

First of all, we examined this one-pot reaction using the reported methods shown in Scheme 2. However, we found that no reactions occurred under these conditions. We selected TiCl₄ as the Lewis acid and PPh₃ as the Lewis base to examine this one-pot reaction of an arylaldehyde (2.0 equiv.), diphenylphosphinamide (1.0 equiv.), and MVK (2.0 equiv.) because N-arylidenediphenylphosphinamides 1 have been synthesized in the presence of $TiCl_4$ (Scheme 1) and PPh₃ is the best Lewis base for promoting the Baylis-Hillman reaction of arylaldehydes with 1.⁵ As a result, it was found that when the reaction was carried out in the presence of TiCl₄ (0.55 equiv.), PPh₃ (1.0 equiv.) and triethylamine (Et₃N) (9.0 equiv.) in dichloromethane, the corresponding aza-Baylis-Hillman adduct 2a was formed in 58% yield (Table 1, entry 3). Triethylamine (Et₃N) itself cannot promote the Baylis-Hillman reaction of 1 with MVK, but it was employed to quench the HCl formed during the reaction. TiCl₄ acted as a Lewis acid in the condensation of an arylaldehyde with diphenylphosphinamide to produce 1 in situ; we were able to observe the formation of 1 on a TLC plate during the reaction. The amount of Et₃N is crucial for this one-pot reaction

because 3 or 20 equiv. of Et_3N can completely stop the reaction under the same conditions (Table 1, entries 1, 2 and 4). Dichloromethane is the best solvent for this reaction (Table 1, entries 3 and 5–7). During further optimizing the reaction conditions, we found that the best reaction conditions for this one-pot aza-Baylis–Hillman reaction involve using PPh₃ (0.1 equiv.) as the Lewis base and TiCl₄ (0.8 equiv.) as the Lewis acid in the presence of Et_3N (12 equiv.) (Table 1, entry 8).⁸ The results are summarized in Table 1. The presence of 4 Å molecular sieves did not improve the yield of **2a** (Table 1, entry 10).

Under the optimized reaction conditions, we next carried out this novel one-pot reaction using various arylaldehydes as the substrates (Table 2). In general, the corresponding Baylis-Hillman adducts were obtained in 40-86% yields. The results are summarized in Table 2. For the arylaldehydes having strongly electron-withdrawing substituents such as *p*-nitrobenzaldehyde and *p*-fluorobenzaldehyde (active arylaldehydes), we found that some by-products were formed and the yields of 2 decreased. This is because these active arylaldehydes can undergo a TiCl₄ and amine promoted Baylis-Hillman reaction to give the chlorinated adducts and rearranged Z-olefins in addition to the normal Baylis–Hillman products.^{2t-y} Therefore, in these cases (Table 2, entries 4, 6 and 7), 1.0 equiv. of arylaldehyde was employed and the corresponding aza-Baylis-Hillman adducts were obtained in moderate yields.

Scheme 2.

Table 1. One-pot three component aza-Baylis–Hillman reaction of benzaldehyde (2.0 equiv.), diphenylphosphinamide (1.0 equiv.), with MVK (2.0 equiv.) in the presence of $TiCl_4$, Et_3N and PPh₃ at room temperature

	Ph-C	0 CH=O + H ₂ N—PP	$h_2 + \prod_{1}^{O} \frac{\text{TiCl}_4, \text{Et}_3\text{N}}{\text{solvent}}$	PPh ₃ →	$\begin{array}{c} O \\ Ph_2P-NH \\ Ph \\ Ph \\ 2a \end{array}$	
Entry	TiCl ₄ (equiv.)	Et ₃ N (equiv.)	Lewis base PPh ₃ (equiv.)	Solvent	Time (h)	Yield (%) ^a 2a
1	0.55	3.0	0.2	CH ₂ Cl ₂	72	No reaction
2	0.55	3.0	1.0	CH_2Cl_2	72	No reaction
3	0.55	9.0	1.0	CH_2Cl_2	72	58
1	0.55	20.0	1.0	CH_2Cl_2	72	Trace
	0.55	9.0	1.0	THF	72	11
5	0.55	9.0	1.0	DMF	72	Trace
	0.55	9.0	0.1	CH_2Cl_2	72	57
	0.8	12.0	0.1	CH_2Cl_2	72	64
	1.0	15.0	0.1	CH_2Cl_2	72	34
0 ^b	0.55	9.0	0.1	CH_2Cl_2	72	30

^a Isolated yields.

^b In the presence of 4 Å molecular sieves.

Table 2. One-pot three component aza-Baylis–Hillman reaction of arylaldehydes (2.0 equiv.), diphenylphosphinamide (1.0 equiv.), with MVK (2.0 equiv.) in the presence of TiCl₄, Et₃N and PPh₃ at room temperature

	$Ar-CH=O + H_2N-$	$\frac{O}{PPh_2} + \frac{O}{0} - \frac{O}{0}$	$\frac{\text{TiCl}_4 (0.8 \text{ eq}), \text{Et}_3 \text{N} (12 \text{ eq}), \text{PPh}_3}{(0.1 \text{ eq})} \xrightarrow{\text{Ph}_2 \text{P} - \text{NH}}_{\text{CH}_2 \text{Cl}_2, \text{r.t.}} \xrightarrow{\text{CH}_2 \text{Cl}_2, \text{r.t.}} Ar$		
Entry	Ar	Product	Time (h)	Yield (%) ^a 2	
1	<i>p</i> -MeC ₆ H ₄	2b	120	51	
2	p-EtC ₆ H ₄	2c	120	86	
3	p-MeOC ₆ H ₄	2d	120	52	
4 ^b	p-ClC ₆ H ₄	2e	72	56	
5	p-BrC ₆ H ₄	2f	72	60	
6 ^b	p-FC ₆ H ₄	2g	48	40	
7 ^b	p-NO ₂ C ₆ H ₄	2h	12	48	
8	C ₆ H ₅ CH=CH	2i	120	42	
	СН=О				
9		2j	120	70	
10	m-C ₆ H ₅ OC ₆ H ₄	2k	120	52	

^a Isolated yields.

^b 1.0 equiv. of arylaldehyde was employed.

It should be emphasized here that when methyl acrylate or acrylonitrile is used as the Michael acceptor under the above, one-pot, reaction conditions, no reaction takes place.

In conclusion, we have found that a novel one-pot three component aza-Baylis-Hillman reaction of arylaldehydes, diphenylphosphinamide, and MVK can be achieved using TiCl₄ (0.8 equiv.) and PPh₃ (0.1 equiv.) in dichloromethane in the presence of Et_3N (12 equiv.). The reaction proceeds via the reaction of 1 formed in situ with MVK promoted by the Lewis base PPh₃. Efforts are underway to elucidate the mechanistic details of this reaction and the key properties required of the Lewis bases for the different substrates in this novel, one-pot, aza-Baylis-Hillman reaction. Work along these lines is currently in progress.

Acknowledgements

We thank the State Key Project of Basic Research (Project 973) (No. G2000048007) and the National Natural Science Foundation of China for financial support (20025206).

References

- 1. (a) Baylis, A. B.; Hillman, M. E. D. Ger. Offen. 1972, 2,155,113; Chem. Abstr. 1972, 77, 34174q; Hillman, M. E. D.; Baylis, A. B. US Patent 1973, 3,743,669; (b) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815.
- 2. (a) Ciganek, E. Org. React. 1997, 51, 201; (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001; (c) Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653; (d) Brzezinski, L. J.; Rafel, S.; Leahy, J. M. J. Am. Chem. Soc. 1997, 119, 4317; (e) Miyakoshi, T.; Saito, S. Nippon Kagaku Kaishi 1983, 1623; Chem. Abstr. 1984, 100, 156191g; (f) Marko, I. E.; Giles, P. G.; Hindley, N. J. Tetrahedron 1997, 53, 1015; (g) Richter, H.; Jung, G. Tetrahedron Lett. 1998, 39, 2729; (h) Barrett, A. G. M.; Cook, A. S.; Kamimura, A. Chem. Commun. 1999, 2533; (i) Kunidig, E. P.; Xu, L. H.; Romanens, P.; Bernardinelli, G. Tetrahedron Lett. 1993, 34, 7049; (j) Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; MaCague, R. J. Org. Chem. 1998, 63, 7183; (k) Kawamura, M.; Kobayashi, S. Tetrahedron Lett. 1999, 40, 1539; (1) Kataoka, T.; Iwama, T.; Tsujiyama, S.; Iwamura, T.; Watanaba, S. Tetrahedron 1998, 54, 11813; (m) Kataoka, T.; Iwama, T.; Kinoshita, S.; Tsujiyama, Y.; Iwamura, T.; Watanabe, S. Synlett 1999, 197; (n) Kataoka, T.; Iwama, T.; Tsujiyama, S.; Kanematsu, K.; Iwamura, T.; Watanabe, S. Chem. Lett. 1999, 257; (o) Kataoka, T.; Iwama, T.; Tsujiyama, S. Chem. Commun. 1998, 197; (p) Ono, M.; Nishimura, K.; Nagaoka, Y.; Tomioka, K. Tetrahedron Lett. 1999, 40, 1509; (q) Li, G.-G.; Wei, H.-X.; Gao, J. J.; Caputo, T. D. Tetrahedron Lett. 2000, 41, 1; (r) Kataoka, T.; Kinoshita, H.; Iwama, T.; Tsujiyama, S.; Iwamura, T.; Watanabe, S.; Muraoka, O.; Tanabe, G. Tetrahedron 2000, 56, 4725; (s) Li, G.-G.; Gao, J.; Wei, H.-X.; Enright, M. Org. Lett. 2000, 2, 617; (t) Shi, M.; Jiang, J.-K.; Feng, Y.-S. Org. Lett. 2000, 2, 2397; (u) Shi, M.; Feng, Y.-S. J. Org. Chem. 2001, 66, 406; (v) Shi, M.; Jiang, J.-K.; Cui, S.-C.; Feng, Y.-S. J. Chem. Soc., Perkin Trans. 1 2001, 390; (w) Shi, M.; Jiang, J.-K. Tetrahedron 2000, 56, 4793; (x) Shi, M.; Li, C.-Q.; Jiang, J.-K. Chem. Commun. 2001, 833; (y) Shi, M.; Jiang, J.-K.; Li, C.-Q. Tetrahedron Lett. 2002, 43, 127.

- Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am. Chem. Soc. 1999, 121, 10219.
- (a) Perlmutter, P.; Teo, C. C. *Tetrahedron Lett.* 1984, 25, 5951;
 (b) Takagi, M.; Yamamoto, K. *Tetrahedron* 1991, 47, 8869;
 (c) Bertenshow, S.; Kahn, M. *Tetrahedron Lett.* 1989, 30, 2731;
 (d) Shi, M.; Xu, Y.-M. *Chem. Commun.* 2001, 1876;
 (e) Shi, M.; Xu, Y.-M. *Eur. J. Org. Chem.* 2002, 696.
- 5. Shi, M.; Zhao, G.-L. Tetrahedron Lett. 2002, 43, 4499.
- (a) Jennings, W. B.; Lovely, C. J. *Tetrahedron* 1991, 47, 5561;
 (b) Yamada, K.; Harwood, S. J.; Groger, H.; Shibasaki, M. *Angew. Chem., Int. Ed.* 1999, 3504.
- 7. Balan, D.; Adolfsson, H. J. Org. Chem. 2002, 67, 2329 and references cited therein.
- Typical reaction procedure for the one-pot aza-Baylis– Hillman reaction of *p*-chlorobenzaldehyde, diphenylphosphinamide, methyl vinyl ketone (MVK): To a Schlenk tube with *p*-chlorobenzaldehyde (70 mg, 0.50 mmol),

diphenylphosphinamide (113.5 mg, 0.5 mmol), and triphenylphosphine (13.1 mg, 0.050 mmol) in CH₂Cl₂ (2.0 mL) was added methyl vinyl ketone (MVK) (70 mg, 81 μ L, 1.0 mmol) under an argon atmosphere and the reaction mixture was stirred for 72 h at room temperature (20°C). The solvent was removed under reduced pressure and the residue was purified by a silica gel column chromatography (eluent: EtOAc/petroleum=1/1) to give **2e** (117 mg, 56%) as a colorless solid.

The spectral data of **2e**: mp 161–164°C; IR (KBr) ν 1674 cm⁻¹ (C=O); ¹H NMR (CDCl₃, 300 MHz, TMS) δ 2.28 (3H, s, CH₃), 3.37 (1H, dd, J_{CH-NH} =11.1 Hz, J_{P-N-H} =8.4 Hz, NH), 4.87 (1H, t, J_{CH-NH} =11.1 Hz, J_{P-N-CH} =11.1 Hz, CH), 6.11 (1H, s, =CH), 6.21 (1H, s, =CH), 7.20–7.31 (4H, m, Ar), 7.37–7.56 (6H, m, Ar), 7.80–7.90 (4H, m, Ar); MS (EI) m/e 409 (M⁺, 4.82), 340 (M⁺–69, 12.31), 208 (M⁺–201, 100); [found: C, 67.44; H, 5.36; N, 3.38. C₂₃H₂₁NClO₂P requires C, 67.40; H, 5.17; N, 3.42%].